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Abstract

A new high resolution finite volume method is proposed here that uses flux–vector splitting as the building block to

represent the physical processes. The high accuracy projection in space is obtained here, inter alia, by using some com-

pact schemes of Sengupta et al. [1] and Lele [2] – that have extremely high accuracy in spectral plane. This produces a

new class of finite volume (FV) scheme for spatial discretization, that has been analyzed for spectral accuracy, numer-

ical stability and dispersion relation preservation (DRP) property following the full-domain analysis method of [1] using

two different time integration strategies. These combination of spatial and temporal methods have been tested for two

linear wave problems, reported in [1,3] and the solution of Burgers� equation is compared with the analytical results

presented in Adams and Shariff [4]. The shock capturing method is based on the proposed technique in [5], that does

not require the usage of any nonlinear differencing techniques or limiters.

To show that the proposed method can also handle irregular grids, the Burgers� equation is solved using non-

uniform grids. Also to demonstrate the utility of the proposed scheme to solve practical problems, the benchmark prob-

lem of nonlinear wave propagation in a one-dimensional shock-tube has been solved with the initial data as given in [23]

by solving the Euler equation.

The analysis and comparison of this flux vector splitting scheme with other well known methods clearly demonstrate

the superior scale resolution of the proposed method, at the same time providing a neutrally stable scheme when used

with four stage Runge–Kutta scheme. Also the same scheme displays extended ranges of wave numbers and circular

frequencies over which DRP property is valid. The computed results of three test cases and their comparison with ana-

lytical results clearly reveal that the presented method can be used for practical problems.
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1. Introduction

Finite volume methods, ever since their inceptions, have been preferred by researchers for their robust-

ness and ability to satisfy few conservation and favorable numerical properties in the physical space com-

putations. While the early efforts using FV methods employed low order schemes, in recent times high
accuracy FV method results have been reported in [6,7,17] using collocated grid and in [8] using staggered

grids for cell averaged unknowns. While [6] have employed fourth order accurate FV compact schemes,

[7,17] used finite volume compact schemes for large eddy simulations. While in [6] one requires a coordinate

transformation before applying the discretization scheme, in [7,17] the finite volume scheme can be directly

applied in the physical space. In [8], a FV has been used on staggered grids, that is essentially based on the

compact scheme of Lele [2]. All these compact scheme based FV methods display wide scale resolution abil-

ity. For example, in [8] it has been shown to resolve twice the range of wave numbers as compared to the

standard fourth order scheme, if one admits less than one percent filtering by the discretization of the first
derivatives.

Other works that have used compact schemes within finite difference or finite volume context are given in

[14–21]. In [14], Lax–Friedrich flux–vector splitting scheme was used, while Ravichandran [15] proposed a

compact scheme based on kinetic flux vector splitting scheme in the finite difference context. In [21] higher

order upwind compact scheme was proposed to solve hypersonic transition problems in a finite difference

framework. Gaitonde and Shang [16] were perhaps the first to apply compact schemes in finite volume con-

text for computational electro-magnetics and wave propagation problems.

The compact schemes provide high resolution and high formal order of accuracy for discretizing and
filtering operators and variables and derive the name due to compact stencils that are employed. Achieving

high resolution is the main goal of compact schemes and not necessarily high order – a point that has been

emphasized in [4,1]. One of the attributes of the compact schemes is their usage in transformed plane and

therefore one obtains schemes using uniformly distributed grid points. While compact schemes have been

employed in FV methods – as discussed above – we are not aware of any efforts that have been made for

flux–vector splitting FVMs. The concept of flux vector splitting is rooted to the fact that the physical fluxes

crossing the boundaries of control surfaces that are constructed for the FVMs can be split depending on the

sign of the eigenvalues of the associated Jacobian matrices. Mathematically this is facilitated by the fact
that the fluxes are homogeneous function of order one for the unknowns. The basic ideas behind the high

resolution flux vector splitting is given in [9–11]. This involves interpolating variables within each cell in

terms of the cell-averaged quantities, that admits jump discontinuities. Such interpolants, valid within each

cell involves first and second differences. In [10,11] these differences were estimated by lowest order centered

expressions. The overall accuracy of the FVM is thus determined by the level of accuracy of such interpo-

lations. In the present work we improve the property of the higher order interpolation by using compact

differences instead to fix the parameters of the interpolant.

The paper is structured in the following manner. In the next section we derive the new scheme – which we
call as the FV2S scheme. In Section 2, properties of the FV2S scheme are presented and compared with

other existing methods. In Section 3, we present results for a few test problems using FV2S and discuss them

in the context of solving wave propagation problems and shock capturing ability of the scheme.
2. Derivation of the FV2S scheme

In this section, we outline the steps by which we derive the new flux vector splitting finite volume
method. In deriving this new scheme, we consider the solution to be piecewise continuous in each cell,

as is customary for flux in high resolution flux vector splitting scheme. The schematic of unknowns within
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each cell is shown in Fig. 1 for one dimensional variation. Thus, in the jth cell the unknown is continuous

and is given by (see [10,11] for details),
uðxÞ ¼ uj þ
Dju
h

ðx� xjÞ þ
3D2

j u

2h2
k ðx� xjÞ2 �

h2

12

� �
; ð1Þ
where h = xj+1/2 � xj� 1/2 is the cell width and uj is the cell averaged value of the unknown defined as

uj ¼ 1
h

R xjþ1=2

xj�1=2
uðxÞdx. In the above expression k is a constant that is not fixed. Also, in Eq. (1) Dj and D2

j

are respectively the first and second differences. Different values of k are chosen (see [10,11] for details)

to obtain different ordered schemes. For example, when the differences were chosen as, Dj ¼ ujþ1�uj�1

2
and

D2
j ¼ uj�1 � 2uj þ ujþ1, the following schemes were obtained: Second order central difference (CD2) scheme

for k = 1; QUICK scheme for k = 1/2 and a third order accurate scheme for k = 1/3 among other schemes

that can be obtained.

In the present scheme, we will use Eq. (1) as the interpolant, but we will obtain the two differences in it by
obtaining them from the high accuracy scheme of [1] for the first derivative and a scheme of [2] for the sec-

ond derivative. In many problems of mathematical physics the first derivative terms represent the process of

convection while the second derivative terms represent diffusion process. For convection process, the infor-

mation propagates directionally and hence it is natural to choose upwinded schemes that pass the signal

without numerical instabilities. In contrast, the diffusion process is isotropic and the corresponding deriv-

ative is centrally discretized. These schemes for first and second differences are given in the following. For

the evaluation of the first difference, the following internal stencil is used for the jth interior point,
bj�1u0j�1 þ bju0j þ bjþ1u0jþ1 ¼
1

h

X2

k¼�2

ajþkujþk; ð2Þ
x

u

uL
j-3/2uL
j-3/2uL
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Fig. 1. Piecewise continuous representation of solution used for higher order reconstruction schemes.
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with aj�2 ¼ � 5
3
þ 5

6
a; aj�1 ¼ � 140

3
þ 20a

3
; aj = �15a; bj±1 = 20 ± a and bj = 60 and a = �0.24. This is essen-

tially a fifth order upwind scheme given in [1] following the stencil given in [21]. The upwinding is needed

to avoid numerical instability and achieved via negative feedback stabilization obtained through introduc-

tion of even derivatives (in this case, a sixth derivative term).

This scheme needs boundary closure at two points at and near the boundaries for non-periodic problem.
The following boundary stencil have been used (as derived and explained in [10]),
u01 ¼
ð�3u1 þ 4u2 � u3Þ

2h
: ð3Þ
For the near-boundary points, the following stencil is proposed
u02 ¼
2b
3
� 1

3

� �
u1 �

8b
3

þ 1

2

� �
u2 þ ð4bþ 1Þu3 �

8b
3
þ 1

6

� �
u4 þ

2b
3
u5

� ��
h: ð4Þ
This composite scheme was introduced in [1] as the first optimized upwind compact scheme (OUCS1). The

value of b in Eq. (4) is chosen as �0.09 for j = 2 and 0.12 for j = n � 1, where n is the total number of cells.
There is a specific reason for the choice of Eqs. (3) and (4). It has been shown in [1,10] that many commonly

used compact schemes for non-periodic problems suffer from numerical instability due to the choice of one-

sided implicit boundary closure schemes. Such instabilities percolate in the interior of the computational

domain as well. One way to avoid such numerical instabilities in the interior is to replace the implicit

boundary closure scheme by explicit dissipative schemes that completely eliminates the problem. The details

of upwind compact schemes can be found in [1,10].

For the evaluation of the second difference, the scheme given by Eq. (2.2.7) in [2] for second derivative

has been used here. The boundary closure for the scheme is as provided in [10] and the full scheme is
provided below for completeness sake,
u001 þ 11u002 ¼
ð13u1 � 27u2 þ 15u3 � u4Þ

h2
; ð5Þ

u001 þ 10u002 þ u003 ¼
12ðu3 � 2u2 þ u1Þ

h2
; ð6Þ

au00j�1 þ u00j þ au00jþ1 ¼
b

4h2
ðuj�2 � 2uj þ ujþ2Þ þ

a

h2
ðuj�1 � 2uj þ ujþ1Þ; ð7Þ
where a = 2/11; a = 12/11 and b = 3/11. This is a formally sixth order scheme [2].

The above two methods for evaluating the differences can be written down notationally as,
½A1�fDjug ¼ ½B1�fug; ð8Þ

½A2�fD2
j ug ¼ ½B2�fug: ð9Þ
These implicit relations can be rewritten in explicit form given by
fDjug ¼ ½C1�fug; ð10Þ

fD2
j ug ¼ ½C2�fug: ð11Þ
Thus, from Eq. (1) one can obtain the cell-interface quantities for the jth-cell of Fig. 1 as
fuLg ¼ ½CL�fug; ð12Þ

fuRg ¼ ½CR�fug; ð13Þ



T.K. Sengupta et al. / Journal of Computational Physics 207 (2005) 261–281 265
with,
½CR� ¼ ½I � þ 1

2
½C1� þ

k
4
½C2�; ð14Þ

½CL� ¼ ½I � � 1

2
½C1� þ

k
4
½C2�: ð15Þ
These equations would be used for calculating the cell interface variables in FV2S, that retain the correct

physical distribution of fluxes. It is to be noted that the constant, k is a free parameter of the scheme, that
can be fixed by looking at the relevant numerical properties of the FV2S scheme. This is attempted next.
3. Spectral properties of FV2S scheme

In analyzing the specific properties of this scheme, we consider the following one dimensional flux trans-

port problem,
ou
ot

þ of
ox

¼ 0; ð16aÞ
where the flux term is considered to be homogeneous function of order one of the state vector. The above

equation can be rewritten as
ou
ot

þ A
ou
ox

¼ 0; ð16bÞ
where A is the Jacobian of the flux function, f. The spectral resolution of general discretization schemes can

be obtained following the method of [1] and the corresponding details are as in [10]. However, a brief out-
line is provided here for finite volume methods for the sake of completeness. In this method, the cell-

averaged quantities are represented by
uj ¼
Z þkm

�km

UðkÞeikxj dk: ð17Þ
In the above, the integral is performed over the range �km 6 k6 +km, that is fixed by the grid resolution

and given by km ¼ p
h. This is the well known Nyquist criterion that fixes the resolution of the discrete finite

grid as opposed to the theoretical limit (�1, +1).

The flux term (f), is split further numerically into components via feq = A+u+ + A�u�, where u± are the

state vector propagating in the downstream and upstream direction, respectively. The flux Jacobian A, is
split into the respective directions using the right eigenvector (R) and eigenvalues (K±) as A± = RK±R�1.

In [10] the spectral resolution or the effectiveness of any flux vector splitting scheme is defined as,
keq
k

¼ feq
f

¼ Aþuþ þ A�u�

Au
: ð18aÞ
The above expression on the right hand side represents the quotient between the numerical flux to the phys-

ical flux term and ideally it should be equal to one. For the flux–vector component, this represents a scalar

quantity and thus, gives the phase representation of the discretized term.

Noting that A = R(K+ + K�)R�1, the above can be simplified further as
keq
k

¼ Kþ

Kþ þ K�
uþ

u
þ K�

Kþ þ K�
u�

u
: ð18bÞ
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Referring to Fig. 1, one can obtain the ratios u�

u using the FV2S scheme. Another fact to note is that
keq
k does

not depend on the specific value of the ratio Kþ

KþþK� i.e. on the exact form of the flux function. If we call this

as a then the spectral resolution of the scheme is given by
keq
k

¼ a
uþ

u
þ ð1� aÞ u

�

u
: ð18cÞ
If we decide to evaluate this at the left boundary of the jth-cell, then in Eq. (18c) we calculate the unknowns

from Eqs. (11) and (12) by noting that uþj�1=2 is u
R of the (j � 1)th-cell and u�j�1=2 is u

L of the jth-cell. The

presented method for characterizing the numerical scheme, by adopting the method of [1], allows one to

investigate the full domain simultaneously. It is to be noted that the usual practice followed so far in the

literature, has been to characterize schemes simply based on the performance of the schemes for interior

points only. For the present exercise, we have used 51 point for the purpose of analysis, ensuring that

the presented results do not depend on the choice of number of points.

In Fig. 2(a), the real part of
keq
k is compared with other known finite volume schemes for the interior

nodes only. For FV2S scheme, results are shown for k = 0.4 and 0.6. For the purpose of comparison we

have included the second order central difference scheme in Fig. 2, denoted by CD2 scheme. We have al-

ready remarked that k is a constant that needs to be fixed based on numerical properties. It is evident that

for k = 0.6 we have reduced over- and undershoot for
keq
k real

as compared to that for k = 0.4. However, it is

shown later that the wave propagation property of the scheme – as given by the DRP property – requires

that one chooses k = 0.4. The results in Fig. 2(a) show that the present scheme has almost twice the range of

wave numbers well resolved as compared to other well known schemes like QUICK orMUSCL. The results

for these latter flux vector splitting schemes were reported in [12,10]. The present FV2S scheme also has
marginally larger resolution as compared to the finite volume method of [8] – that is marked as OCS4

in the figure. It is noted that MUSCL and OCS4 schemes have slight overshoot across low wave numbers,

while FV2S has undershoot for k = 0.6 and overshoot for k = 0.4 at lower wave numbers. This figure only

provides the phase information of different FV schemes for the interior stencils. Also, in Fig. 2(b) the imag-

inary part of
keq
k is shown for these flux vector splitting FV schemes. It can seen that all the schemes show

positive values – indicating added numerical dissipation at different length scales, being more at larger wave

numbers – a desirable feature of any numerical schemes. Note that the CD2 scheme is a central scheme and

is non-dissipative.
In Fig. 3, the real and imaginary part of

keq
k is shown for FV2S scheme for k = 0.4 and 0.6 for some rep-

resentative points in the full domain using Eqs. (3) and (4) as the boundary closure schemes. In plotting

these figures a fourth dissipation term has been added to stabilize the finite volume spatial discretization

process. For the jth cell, the added numerical dissipation is given by, Dj ¼
djþ1=2�dj�1=2

h , where the dissipation

term on the cell face is given by �b2(uj+2 � 3uj+1 + 3uj � uj� 1). It is clear that the scheme performs well for

all the points except for j = 2, even after adding the numerical dissipation term. This point is unstable, while

all the other points are made stable by introduction of the dissipation term. In an actual application, at

j = 2, a CD2 type non-dissipative scheme is to be employed to avoid numerical instability. Such substitution
by an explicit scheme does not alter any other point properties and can be used for any computation. This

type of treatment has been used by the authors in finite difference context in [1,10] for solving inviscid and

viscous flow problems. For convection dominated flows, numerical instability will not cause problems if the

disturbances are convected downstream from the inflow to the interior of the domain, where it will find

itself in stable region with time. Furthermore, such tendencies of spatial discretization can further accentu-

ate or attenuate depending on time integration strategies. This implies that one should obtain the amplifi-

cation factor of the combined space–time integration strategy.

The stability property of the combined space–time discretization scheme can be ascertained with respect
to specific equation and to study propagation problems, we use one-dimensional convection equation for

this purpose:
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ou
ot

þ c
ou
ox

¼ 0: ð19Þ
If we use the bi-lateral Laplace transform for u given by
uðx; tÞ ¼
Z

Uðk; tÞeikðx�ctÞdk; ð20Þ
then we define the amplification factor of the numerical scheme by G = U(k,t + Dt)/U(k,t). For the above

equation, information propagates from left to right that leads to the following flux vector splitting given by
unþ1
j � unj
Dt

þ c½uþjþ1=2 � uþj�1=2�h ¼ 0; ð21Þ
when Euler time integration strategy is used to advance the time step from tn to tn+1. Using N c ¼ cDt
h for the

CFL number and Eqs. (12) and (13), the amplification factor at the jth-cell is obtained as,
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GjðkÞ ¼ 1� N c

XN
l¼1

½CR
j;l � CR

j�1;l�eikðxl�xjÞ: ð22Þ
We have also used four-stage Runge–Kutta time integration scheme (RK4) to be used with FV2S-scheme. If

we denote by LðuÞ ¼ �c ou
ox, then the steps used in RK4 are given by
Step 1 : uð1Þ ¼ uðnÞ þ Dt
2
L½uðnÞ�;

Step 2 : uð2Þ ¼ uðnÞ þ Dt
2
L½uð1Þ�;

Step 3 : uð3Þ ¼ uðnÞ þ DtL½uð2Þ�;

Step 4 : uðnþ1Þ ¼ uðnÞ þ Dt
6
fL½uðnÞ� þ 2L½uð1Þ� þ 2L½uð2Þ� þ L½uð3Þ�g:

ð23Þ
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If we define,
Aj ¼ N c

XN
l¼1

½CR
j;l � CR

j�1;l�eikðxl�xjÞ; ð24Þ
then it is easy to show that the amplification factor at the jth-cell for the RK4 time integration scheme is,
GjðkÞ ¼ 1� Aj þ
A2
j

2
�
A3
j

6
þ

A4
j

24
: ð25Þ
The amplification factors are shown in Fig. 4 for Nc = 0.01 and 1 for the FV2S scheme when used with

Euler and RK4 time integration scheme. It is evident that the Euler time integration scheme is stable for all

cells except for j = 2. However, this scheme shows large attenuation at large wave numbers for other cells –

that is not suitable for high accuracy computing. In contrast, RK4 scheme provides near neutral stability

for all cells for all wave numbers. Thus, RK4 time integration is preferred from numerical stability point of

view.

The dispersion relation preservation is a mandatory property for schemes used to produce results valid
for long time intervals over large domains for propagation problems. This property must not be violated for

any scheme to be considered for DNS and acoustics or any other nonlinear wave propagation problems.

The dispersion relation is a property specific to physical systems as defined by the governing differential

equation and for the convection equation this is given by, x = kc. Any numerical scheme must satisfy

the physical dispersion relation for unsteady problems in general. As the energy of convective dispersive

system travels at the group velocity, the dispersion relation preservation (DRP) property is assessed by

comparing numerical and physical group velocity [10]. One can obtain the numerical group velocity from

the numerical dispersion relation (see [13] for full details as to how this can be evaluated). For the convec-
tion equation this is given by, xeq = kcN, where the numerical phase speed is, cN ¼ b1

kDt. The phase angle is

obtained from the amplification rate as, tanðb1Þ ¼ � Gimag

Greal
. Since the group velocity is defined as V gN ¼ dxeq

dk ,

the ratio of numerical and physical group velocity for the convection equation can be shown as
V gN

c
¼ 1

N ch
db1

dk
: ð26Þ
For the FV2S scheme when used with Euler time integration strategy the DRP property is simply

assessed by evaluating the numerical group velocity from Eq. (26) directly, when b1 as a function of k is

directly obtained from Eq. (22). For RK4 time integration scheme, the phase angle b1 is obtained from

Eq. (25) and differentiated with respect to k by using Eq. (21).

The numerical group velocity is compared with the physical group velocity in the (kh � xDt) – plane as
shown in Figs. 5 and 6 for Euler and RK4 time integration strategy, respectively. To compare the relative

merits of the two time integration schemes, these figures are drawn for the basic spatial discretization with-

out the explicit dissipation terms. Contour lines of the ratio of Eq. (26) are plotted only in the range

0:95 6
V gN

c 6 1:05. From Fig. 5, it is seen that the Euler time integration restricts one to very small time

steps in order to satisfy DRP criterion. In the six frames of Fig. 5, different values of k have been consid-

ered. It is seen that the increase of this parameter restricts the range of wave numbers that satisfy the DRP

property criterion, with a value of k = 0.4 proving to be optimum when the DRP property and the spectral

resolution are considered together. Although the DRP patch for k = 0.33 is larger as compared to k = 0.4
case,

keq
k for k = 0.33 is inferior to k = 0.4 case. It was for this reason, in Fig. 2 we have shown this value

along with k = 0.6 – that shows relatively poor DRP property. In comparison to Euler time integration

scheme, same property in Fig. 6 shows that the range of xDt over which DRP property is good extends

by order of magnitude – covering almost 50% of the Nyquist limit. It is also noted that k in the range

of 0.3–0.4 shows the largest range of kh allowed from DRP property point of view. For RK4 scheme,
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(Nc = 0.01); (b) and (c) RK4 time integration schemes with Nc = 0.01 and 1 respectively.
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k = 0.6 shows inferior DRP property. Thus, it is seen that spectral resolution and DRP property imposes

opposite demand on the value of k, and k = 0.4 appears to be an optimum choice.
4. Results and discussion

In order to test the capability of the present method to capture discontinuity, linear convection equation,
ou
ot þ c ou

ox ¼ 0, is solved with the discontinuous initial condition
uðxþ 0:5; 0Þ ¼ �x sinð3=2px2Þ � 1 < x < �1=3;

¼ j sinð2pxÞj jxj < 1=3;

¼ 2x� 1� sinð3pxÞ=6 1=3 < x < 1:
and supplemented with periodic boundary conditions. This test case was originally proposed by Harten

et al. [3], and then used by many authors to check the capability of numerical schemes to obtain solutions

with discontinuities. The solutions are reported at t = 2, that corresponds to a distance of one wavelength

by which the initial solution travels to the right. To capture the discontinuities efficiently the dissipation
switch developed in [5] is used. In this method, the second derivative of the variable (jD2

j j) is used as the

switch. Only at those points, where its value exceeds a threshold (equal to 30), the fourth dissipation is ap-

plied explicitly, as defined already. In principle, the numerical stabilization is similar to the procedure orig-

inally proposed in [22], where a pressure based switch was used to introduce the second derivative term at

discontinuities for Euler equation of gas dynamics, while fourth derivative term was added as the back-

ground dissipation everywhere. In contrast, we do not add second dissipation term at all and the fourth

dissipation term is introduced selectively at those points where the second-derivative-based switch crossed

the threshold value.
Fig. 7(a) and (b) shows the solution using FV2S scheme with Euler and RK4 time integration for

Nc = 0.001 and Nc = 1.0, respectively. The solid line in the figures represent the exact solution. The rationale

for the choice of Nc is very much evident from the spectral properties shown in Figs. 4–6. From Fig. 7, one

can clearly see that the combination of FV2S with RK4 time integration scheme produces accurate solution

in the smooth regions and captures the discontinuities without observable oscillations. The numerical sta-

bility of the computed solution depends on the choice of Nc. With RK4 and FV2S any choice of Nc > 1

caused the solution to blow up for b2 P 0.04. Any value of Nc 6 1 is found to be stable for b2 = 0.04 that

provided the best accuracy for this problem.
Next, we investigate sources of Gibbs� phenomenon for a non-periodic problem by solving the linear

convection equation with a different set of initial condition that has been used in [10]. Here, the wave equa-

tion is solved in a domain 0 6 x 6 1 for c = 0.05 with 201 uniformly distributed points. Convection of a

wave packet, defined by the initial condition displayed in the top panel of Fig. 8 is considered in this case.

For the wave equation, the initial solution convects to the right at phase speed given by c. The wave packet

is chosen in such a way that the solution is zero outside the domain 0 6 x 6 1 at t = 0. Thus, the packet has

discontinuity at both the left and right end of the domain for the initial solution. With time, the packet

convects to the right and only a discontinuity is present inside the computing domain up to t = 20. For
the solution of the problem, we have used the exact boundary condition at x = 0 for all times. This equation

is integrated first by Euler time stepping, using Nc = 0.001 and then by RK4 scheme with Nc = 0.1. Euler

time marching scheme requires a very low value of Nc number to ensure numerical stability across all

the resolved wave numbers determined by the Nyquist criterion.

Gibbs� phenomenon arises whenever a sharp discontinuity is computed by numerical methods and is vis-

ible as left- and/or right-running waves created by odd-order derivatives of the truncation error terms.
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time integration scheme.
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When left uncontrolled these waves grow leading to numerical instability. From the figures it is evident that

the present FV2S scheme is capable to capture solution discontinuity for linear problems.

Next, the present scheme�s ability to capture shock for a non-linear equation is studied by solving the

Burgers� equation given by
ou
ot

þ u
ou
ox

¼ 0 � 1 6 x 6 1; ð27Þ
with the following initial condition
uðx; 0Þ ¼ 0:3þ 0:7 sin pðxþ 1Þ ð28Þ

and periodic boundary condition. This problem admits analytical solution derivable from the solution of

the transcendental equation [4],
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Zðs; nÞ ¼ sin½ðn� Zðs; nÞsÞp�: ð29Þ

The solution of Eq. (27) is then obtained as u(x,t) = 0.3–0.7 Z(s,n), where n = x � 0.3t + 1 and s = 0.7t.

The solution of the problem consists of a steepening wave propagating to the right, which gives rise to a

shock wave at t



278 T.K. Sengupta et al. / Journal of Computational Physics 207 (2005) 261–281
solution. The figure gives evidence of the capability of the newly developed FV2S scheme to correctly com-

pute the discontinuous solution without any oscillations. The computed solutions for the wave packet and

the Burgers� equation are same for both the time integration schemes up to third decimal place.

It is to be noted that in capturing discontinuities for linear equation or shocks in non-linear equation, the

present method required the same procedure that was performed in [5] for the compact finite difference
method in an uniform grid. For the results of Fig. 9 and in [5], fourth dissipation term is used for negative

feedback stabilization at only those points, where the amplitude of second spatial derivative exceeded a

fixed high value. This type of explicit treatment to avoid Gibbs� phenomenon is simpler than the nonlinear

shock capturing methods referred to in [5]. In the context of flux vector splitting schemes, one finds the

mention of using flux limiter schemes that utilize non-linear functions for flux evaluation at control surfaces

to prevent unwarranted oscillations. Apart from the complicated unexplained nature of these flux limiter

schemes, these also introduce source terms in the discrete equation invalidating the continuous nature of

the fluxes across such solution discontinuities. The present method obviates this problem when the excited
wave numbers are limited in nature and one uses uniform grid.

One of the main advantages of finite volume method is its ability to work with irregular grids without

resorting to any coordinate transformation, as is the case with finite difference methods. But for the FV2S

scheme, one would require to work on the transformed plane because its inherent dependence on compact

based finite difference methods. To investigate working with non-uniform grids, we solved the Burgers�
equation again using a clustered grid near the center along with the four-stage Runge–Kutta time integra-

tion scheme. Even though we are working in the transformed plane, the appearance of grid metric term will

give rise to aliasing error which is not present if one works in the physical plane directly. We have used 171
grid points with 121 points clustered between x = �0.5 and +0.5 and the rest of the points are distributed

uniformly over the rest of the domain. The solution is now obtained in the transformed plane (n) by first

obtaining xn ¼ dx
dn at each node and solving the transformed equation,
Fig. 1

compu
ou
ot

þ u
xn

ou
on

¼ 0: ð30Þ
The evolving shock is captured by using the blend of second and fourth dissipation as in [22] with

j(2) = 0.8 and j(4) = 1/32. When only fourth dissipation is used – as in [5] – then one observes significant
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0. Numerical solution of the Burger�s equation (Eq. (25)) at t = 0.637 by FV2S-scheme using a non-uniform grid. All the

tational parameters are same as in Fig. 9.
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Gibbs� phenomenon to the left of the shock and is not shown here. The numerically obtained solution

using non-uniform grid is compared with the exact solution for t = 0.637 in Fig. 10. This shows that

the present method is capable to produce accurate solution when used in an irregular grid. The position

of the shock depends on the DRP property as has been discussed next with respect to the solution of

Euler equation.
To investigate the present method�s ability to solve practical problem we have solved Euler equation for

the one-dimensional shock tube problem or the Riemann problem [23] using the following initial conditions

(t = 0): u = 0; p = 4.4 for x< � 2; p ¼ 2:7þ 1:7 cos ðxþ2Þp
4

h i
for �2 6 x 6 2 and p = 1 for x > 2. With the per-

fect gas assumption and c = 1.4, the governing Euler equation is solved in a computational domain,
�100 6 x 6 100. This problem tests the nonlinear wave propagation property of the computational scheme
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Fig. 11. The pressure, density and velocity profiles in the physical domain computed at t = 60 by finite difference method (top) and

FV2S finite volume method (bottom). For both the methods same compact scheme has been used for evaluating the first derivative.

Right panels show the corresponding DRP plots for the basic spatial discretization scheme.
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and was proposed as one of the benchmark problems for computational aero-acoustics in [23]. This prob-

lem apart from requiring numerical accuracy, also tests the dispersion relation preservation property of

chosen scheme.

The given initial condition evolves into a left running acoustic wave, a convecting entropy wave and a

right traveling shock wave. To check the efficacy of the present flux vector scheme�s ability to capture the
discontinuous solution, this solution is compared to the solution of the same problem using the compact

scheme based finite difference method (FDM). For both the methods the flux vector splitting is used

along with simple extrapolation boundary conditions. The used compact scheme, OUCS1, was proposed

in [1] for FDM and is the same one used to develop the FV2S scheme. The computed results at t = 60 are

shown in Fig. 11, using these two methods. Once again, the blend of second and fourth dissipation is

added – as in [22] – to capture the shock. Both the methods show the ability to capture all the traveling

waves. As compared to the results reported in [23], here the contact discontinuity is captured by the

FDM and not by the FV2S method. The FV2S method also shows Gibbs� phenomenon at the shock,
while the FDM does not have this effect. The shock location and the location of the acoustic waves

are somewhat different for these two methods. To understand the reason behind this, the DRP plot of

the two methods are shown alongside the solutions. In these plots the normalized group velocity contours

are plotted for the traveling wave equation, with the normalized contours between 0.95 and one are

shown in the (kDx � xDt)-plane. The slope of the lines OA in these plots indicate the CFL number that

has been used in the computations. Also, the region in these plane is marked by hatched lines where the

waves would travel slower by 1 to 5% for a travelling wave. For the FVM, the group velocity is always

less than one, while for the FDM there is a range of kDx between 0.88 and 1.7, for which the numerical
group velocity is higher than the physical group velocity and hence the computed shock will move faster

than what it should be. Also, the range of kDx for which the numerical wave components travel slower is

narrower for FDM as compared to FV2S scheme. The overall results of which show that the left running

acoustic wave and the right traveling shock wave both move farther than the corresponding waves cal-

culated by FV2S.

Finally, some comments are in order for using the proposed scheme here for multidimensional problems.

Using structured grids, this did not cause any problem by treating each directions separately while discret-

izing the differential equations by FDM based on compact schemes. A large number of such cases have
been solved and reported by the present authors that have been reported in [10] and references therein.

For FV2S scheme this has to be attempted. When the present flux vector splitting FVM is compared with

the corresponding FDM, then it is found that the FVM requires more computational work without any

additional accuracy of the method. The presented results here are preliminary in nature and we plan to

investigate the scheme further to improve the efficacy and efficiency of this method.
5. Conclusions

A new flux–vector splitting compact finite volume Scheme (FV2S) has been developed here. This

scheme has been analyzed by the matrix-spectral analysis tool developed in Sengupta et al. [1]. It is

shown that FV2S has high spectral accuracy and has the capability to capture discontinuity for linear

problems that could be periodic or non-periodic. The periodic problem is the well known test problem

of Harten et al. [3] and the non-periodic problem is the propagation of a wave-packet that was computed

in [1,5,10].

Capturing shocks for non-linear problem is addressed here by solving the Burgers� equation and the
Riemann problem. The computed solutions match very well with the analytical solution given in [4,23].

As proposed in [5], the numerical methods have been stabilized by introducing fourth dissipation term

at only those points where the second derivative exceeded a prefixed high value.
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